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A novel method of evaluating the critical conditions of an explosive is suggested, 
The method is straightforward and can be used for any arbitrary geometry of the ex- 
plosive body. The advantage of this method is that the technique can be easily applied 
to other branching problems arising in hydrodynamics, reaction kinetics, electronics, 
combustion, etc. 

1. INTRODUCTION 

Solid explosive materials undergo self-heating as a result of a spontaneous 
exothermic decomposition reaction. If the heat conduction within the solid 
material and the Newtonian cooling of the geometrical surface is sufficiently high 
to compensate the heat generated by the chemical reaction, a stable low-tempera- 
ture profile within the explosives is established. If the explosive body is too thick, 
the heat liberated cannot be dissipated by heat conduction and Newtonian cooling, 
and the reaction is accelerated by self-heating effect until an explosion occurs. 
The limiting conditions for which the stable low-temperature regime can be 
maintained are referred to as the critical explosion conditions. 

A number of methods have been described in the literature to establish the 
estimates for critical conditions. Usually these methods make use of analytical 
solutions which can be found for a simplified temperature dependence of the 
reaction rate and for plate [I] and cylinder geometry [2]. For a correct Arrhenius 
temperature dependence the strongly nonlinear differential equations cannot be 
integrated analytically [l] and the branching points have been found by inter- 
polation [3, 41. However, in the vicinity of branching points there are inherent 
difficulties connected with the numerical evaluation of the solutions because the 
calculated profiles during the iteration process can oscillate between two possible 
solutions. 

The goal of this paper is to devise a straightforward method which can be 
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easily adopted to calculate the branching conditions for a differential equation 
describing temperature profiles within the explosive body. The method will be 
developed for a single nonlinear second-order ordinary differential equation, and 
hence generalization to other similar physical problems is obviotis. 

2. THE METHOD 

The technique proposed is based on the GPM algorithm developed by us 
recently [lo]. For simplicity, consider a single second-order ordinary differential 
equation: 

Y” = f(x, Y, Y’, 61, (1) 

subject to boundary conditions 

oloY(O) + PO Y’(O) = Yo 3 

%Y(l> + BlYV) = 71. 

(2) 

To solve Eq. (1) by the shooting method, 

Y(O) = rl (3) 

must be guessed. For y’(O) we obtain (fi, # 0) 

Y’(O) = (l/Bo)bo - mod* (4) 

After denoting 

521 = ay/+l, (5) 

differentiation of Eq. (1) with respect to 77 yields: 

Q; = (%@Y> Ql + (WY’) Ql’. (6) 

Equations (3) and (4) yield for initial conditions Q,(O) and Q,‘(O): 

JXO) = 1, Q,‘(O) = -(ao/Po)- (7) 

Using the notation 

+ = adah 

differentiation of Eq. (1) with respect to 6 gives rise to: 

$” = @flay) # + (aflaY’ P + (WW. 

(8) 

(9) 
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The relevant initial conditions are 

$40) = #‘(O) = 0. 

81 

(10) 

For a correct guess y(O) = 77 the marching integration of Eq. (1) yields: 

Fl(% 6) = “lY(L 7,s) + plfu, q@ - y1 = 0. (11) 

Obviously, the solution of the particular initial-value problem, ~(x, 7, 6), depends 
both on the guess v and on the value of the parameter 6. 

Making use of these variables, the branching points can be readily evaluated. 
The condition for branching is: 

Equation (12) can be rewritten to: 

Evidently, to establish the branching points two nonlinear equations, Eqs. (11) 
and (13), must be solved simultaneously. Using the Newton-Raphson method 
we have: 

where F = (Fl , Fz)' and r, is the Jacobian matrix 

r, = 

Clearly, 

aF, aF, -- 
a7 a8 
aF2 aF, - - 
a7 as 

(14) 

(15) 

To evaluate the derivatives aF2/$ and aF,/aS the relevant auxiliary differential 
equations must be developed. 
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On denoting 

,n, = a2ylaq and y = ayarl as, 

differentiation of Eq. (6) with respect to q yields 

and differentiation of Eq. (6) with respect to 6 gives rise to 

+ = (af/ay) q + (ayap) +Q, + (away aYxw+ + Q,‘+i + (a2faY a@ Ql 
+ (afiayy 9f + wmw Q1v + mw 8s) a’, (19) 

q(O) = y’(O) = 0. (20) 

Differentiation of Eq. (13) yields 

3. EVALUATION OF CRITICAL CONDITIONS OF EXPLOSION 

The method described above may be easily used to establish the conditions of 
explosion. 

The dimensionless steady state heat conduction equation with the zeroth order 
Arrhenius heat generation term is [l]: 

0” + (a/x) 8’ = --6 exp(W + e/r)), 

x = 0 : 8’ = 0 , 
x = I : ve + 8’ = 0. 

(1’) 

(2’) 

On denoting R(8) = exp(tl/(l + e/r)) and setting y = 8, CL~ = v, /I, = 1, and 
y1 = 0 the following equations result. 
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w> = 9, 

e,(O) = 0, 
(3’) 

l-2; + (u/x) Qn,, = -SR’(@ fin, , (6’) 

Q,(O) = 1, .n,‘(O) = 0, (7’) 

I/” + (u/x) #’ = --R(B) - SRye) #, (9’) 

hF,(q, s> = m, 7, 6) + w, 7, s> = 0, (11’) 

F,(rt, s> = 4(1, y, s> + In,‘U, 7, s> = 0, (13’) 

sz; + (+) 4,’ = -2qiqe) 52,s + z(e) fin,], (17’) 

g + (a/x) vt = --Rye) sz, - tipye) i2,+ + z(e) ye. (19’) 

Equations (lo), (14), (16), (18), (20), and (21) do not change. For the cylinder 
and sphere geometry, i.e., for a = 1 and a = 2, respectively, the ordinary differen- 
tial equation (1’) contains a singular point for x = 0. The coefficient a/x, singular 
at x = 0, is cancelled by e’(0) = 0. At x = 0 Eq. (1’) must be written in the form 
8” = -sqe)/(i + u). 

The initial-value problem given by (l’)-(3’), (6’), (9’), (17’), and (19’) can be 
integrated by the standard integration routines with the automatic step-size 
control, as e.g. Runge-Kutta-Merson, variable-order implicit Adams, etc. 

The calculation of explosion conditions is as follows. 

(1) Guess initial values of v” and So, k = 0. 

(2) Integrate a set of five second-order differential Eqs. (1’), (6’), (9’), (17’), 
and (19’) with initial conditions (3’), (7’), (lo), (18), and (20) from x = 0 
to x = 1. The values of 0(1, qk, Sk), L&(1, qk, Sk), $(l, qk, Sk), Q,(l, qk, Sk) 
and ~(1, +, Sk) have been obtained. 

(3) Evaluate the values of F1, F, and I’, according to (11), (13), (16), and (21). 

(4) Construct the next Newton approximation and test if the tolerance 

Irl k+l - Tj” j + 1 Sk+1 - Sk 1 < E 

is fulfilled. If not, set k = k + 1 and go to step 2. 

A course of iteration is presented in Table I. The table reveals that from a 
relatively poor initial guess five iterations are sufficient to find the solution to 
four decimal places. Of course, the convergence properties of the Newton-Raphson 
method depend on the quality of the initial guess v” and So. It can happen that 
for a very poor initial guess the first approximation to the solution, ql and 61, 
has no physical meaning, e.g., S1 < 0, etc. Though the Newton method can also 
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TABLE I 

Course of Iteration for a = 2, y = 10, Y = 100 

k 0 1 2 3 4 5 

rlk 1.5000 1.6760 2.0289 2.1160 2.1174 2.1174 

6” 1.5000 3.3834 3.7697 3.6996 3.6997 3.6997 

e(l) 0.7357 0.0993 0.0008 0.0254 0.0253 

B’(l) -1.2719 -2.1305 -2.4815 -2.5327 -2.5337 

6 72.30 7.803 -2.4046 0.0023 -o.oooo 

W) 0.4972 0.1341 0.0174 0.0075 0.0072 

Q,‘(l) -0.7156 -0.8030 -0.7299 -0.7210 -0.7208 

F2 49.00 12.61 1.0113 0.0262 0.0001 

40) -0.4240 -0.3148 -0.3291 -0.3423 -0.3424 

f(1) -0.5682 -0.2368 -0.1712 -0.1705 -0.1704 

Q,(l) -0.2096 -0.2287 -0.1948 -0.1894 -0.1893 

Q,‘(l) -0.1686 0.0847 0.1729 0.1776 0.1777 

To) -0.2385 -0.1187 -0.0968 -0.0974 -0.0974 

rp’(U -0.1895 0.0461 0.0881 0.0936 0.0937 

TABLE II 

Results for a Sequence of Values of Y, a = 2, 7 = 10 

To 

60 

Number 
of 

iterations 

Y 

100 50 20 10 5 2 1 0.5 

1.5000 2.1174 2.1166 2.1109 2.0920 2.0282 1.8087 1 S992 

1.5000 3.6997 3.6270 3.4196 3.1076 2.5947 1.6639 1.0096 

5 3 3 3 4 4 4 4 

7 2.1174 2.1166 2.1109 2.0920 2.0292 1.8087 1.5992 1.4489 

6 3.6997 3.6270 3.4196 3.1076 2.5947 1.6639 1.0096 0.5582 
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TABLE III 

Critical Values for y = 40 

plate (a = 0) cylinder (n = 1) sphere (a = 2) 

Y 6 ‘1 6 ? 6 7 
-- 

loo 0.885 1.253 2.016 1.467 3.352 1.706 

50 0.868 1.253 1.977 1.467 3.287 1.705 

20 0.819 1.252 1.866 1.465 3.100 1.702 

10 0.748 1.249 1.700 1.458 2.819 1.689 

5 0.636 1.240 1.433 1.435 2.359 1.646 

2 0.432 1.207 0.947 1.350 1.520 1.486 

1 0.278 1.165 0.591 1.252 0.925 1.322 

0.5 0.161 1.123 0.333 1.169 0.512 1.201 

find in this event the domain of physically reasonable parameters it seems more 
convenient to select a new starting point. To enhance the economy of the method, 
the calculated values for a given value of v can be used as the starting point for 
a new value of v. Table II presents results calculated for a sequence of values of v. 
Results for y = 40 are summarized in Table III. Note that the value of r) corre- 
sponds to the parameter (#)* in [3]. 

4. CONCLUSIONS 

The method of direct evaluation of branching points can be easily used for a 
number of physically important equations. Let us mention a few of them: heat 
conduction, mass diffusion and a strong exothermic reaction occurring in a porous 
catalyst [5], axial heat and mass dispersion and a strong exothermic reaction in 
tubular reactors [6], equilibrium of neighboring drops at different potentials [7], 
breakdown of dielectrics [S], spiral flow in a porous pipe [ll], combustion prob- 
lems [ 12-141, evaluation of semiconductor device current characteristics [ 151, 
viscous heating in flow between moving surfaces [16], determination of the energy 
released in the nuclear reactor as a result of power excursion [ 171, etc. The method 
can be readily generalized to a set of ordinary differential equations. Since the 
“method of lines” [9] is capable of converting the elliptic partial differential 
equations to a set of ordinary differential equations, the method proposed can be 
used in a straightforward way to locate branching points in nonlinear elliptic 
equations. 
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